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1 Introduction

Noncommutative field theories [1–4] are interesting subjects which possess the connections

with Planck scale physics, such as string theory and quantum gravity. The most well-

studied are noncommutative field theories in the Moyal spacetime, whose coordinate com-

mutation relation is given by [x̂µ, x̂ν ] = iθµν with an antisymmetric constant θµν . Such field

theories are known to appear as effective field theories of open string theory with a constant

background Bµν field [5, 6]. Various aspects have been extensively analyzed not only as the

simplest field theories in quantum spacetime but also as toy models of string theory [7, 8].

Recently, it has been pointed out that the Moyal spacetime is invariant under the

twisted Poincaré transformation [9–11], which has a Hopf algebraic structure; the Leibnitz

rule of the symmetry algebra is deformed [12, 13]. To implement the twisted Poincaré

invariance in the noncommutative field theories at quantum level, it has been found that

one has to impose a nontrivial statistics on fields, which is called braiding [14, 15]. In fact,

we can demonstrate that in general setting, for correlation functions to possess a Hopf

algebraic symmetry at quantum level, we have to include a braiding [16].

Since the Moyal phase is canceled by the braiding [15], the nonplanar amplitudes, which

usually violate the unitarity when the timelike noncommutativity does not vanish [17–19],

trivially satisfy the Cutkosky rule [20, 21] if we include the braiding.
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In this paper, we study three dimensional noncommutative scalar field theory in the Lie

algebraic noncommutative spacetime [x̂i, x̂j ] = 2iκǫijkx̂k (i, j, k = 0, 1, 2) [22, 23]. This non-

commutative field theory is also physically interesting because the Euclidean version of the

theory is known to appear as the effective field theory of three dimensional quantum grav-

ity theory (Ponzano-Regge model [24]) which couples with spinless massive particles [23].

Since massive particles coupled with three dimensional Einstein gravity are understood as

conical singularities in three dimensions [25], this noncommutative field theory is expected

to describe the dynamics of such conical singularities.

We investigate the unitarity of the three dimensional noncommutative scalar field

theory in the Lie algebraic noncommutative spacetime. This noncommutative field theory

also possesses a Hopf algebraic translational symmetry [16, 23, 26], since the momentum

space has an SL(2, R)/Z2 group structure, which has been shown based on the assumptions

of commutative momentum operators and Lorentz invariance [22]. As mentioned above, for

the Hopf algebraic translational symmetry to hold in the noncommutative field theory at

quantum level, we have to introduce braiding among fields [16, 23, 26]. With the braiding,

the nonplanar amplitudes become the same as the corresponding planar amplitudes if they

exist. But unlike the Moyal case, even the planar amplitudes are nontrivial because of the

nontrivial momentum space. Thus, it is a non-trivial issue whether the Cutkosky rules for

various planar as well as non-planar amplitudes hold in the Lie-algebraic noncommutative

field theory, even when the braiding is introduced.

This paper is organized as follows. In section 2, we review the three dimensional

noncommutative scalar field theory in the Lie algebraic noncommutative spacetime. In

section 2.1, we explain why the noncommutative field theory possesses the SL(2, R)/Z2

group momentum space. There are two approaches to construct the noncommutative

field theory. In section 2.2, we review the star product formalism. In section 2.3, we

explain the operator formalism. In section 2.4, we explain the Hopf algebraic translaitonal

symmetry in the noncommutative field theory. In section 3, we investigate the unitarity

of the noncommutative field theory in the Lie algebraic noncommutative spacetime. In

section 3.1, we calculate the one-loop self-energy diagrams of the noncommutative scalar φ3

theory. In section 3.2, we check whether the Cutkosky rule is satisfied at the one-loop self-

energy diagrams when we consider the braiding and show that the Cutkosky rule holds when

the mass M is less than 1/
√

2κ. The final section is devoted to a summary and a comment.

2 Three dimensional noncommutative field theory in the Lie algebraic

noncommutative spacetime

In this section, we review a three dimensional noncommutative scalar field theory in the

Lie algebraic noncommutative spacetime whose commutation relation is given by
[

x̂i, x̂j
]

= 2iκǫijkx̂k, (2.1)

where i, j, k = 0, 1, 2 [27, 28],1 following the constructions of [22, 23].

1The signatures of the metric and the totally antisymmetric tensor are the following:

ηij = (−1, 1, 1),

ǫ012 = 1.
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2.1 Commutation relations and the momentum space

At first, we assume the following things:

• The momentum operators are commutative:
[

P̂ i, P̂ j
]

= 0.

• The three dimensional Lorentz invariance.

• The Jacobi identity.

• The commutation relations of x̂i and P̂ i satisfy the ordinary canonical commutation

relation in κ→ 0 limit.

Then, we can uniquely determine the commutation relations of x̂i and P̂ i as

[

P̂ i, x̂j
]

= −iηij

√

1 + κ2P̂ iP̂i + iκǫijkP̂k, (2.2)

up to the redefinition P i → f(κ2P jPj)P
i, where f is an arbitrary function [27]. By

identifying x̂i and P̂ i with the ISO(2, 2) Lie algebra as2

x̂i = κ

(

J−1,i −
1

2
ǫi

jkJjk

)

, (2.3)

P̂i = Pµ=i, (2.4)

and imposing the constraint

P−1 =
1

κ

√

1 + κ2PiPi, (2.5)

we can show that the commutation relations (2.1) and (2.2) can be derived from the

ISO(2, 2) Lie algebra [22]. Here, the commutation relations of ISO(2, 2) Lie algebra are3

[Jµν ,Jρσ] = −i(ηµρJνσ − ηµσJνρ − ηνρJµσ + ηνσJµρ), (2.6)

[Jµν ,Pρ] = −i(ηµρPν − ηνρPµ), (2.7)

[Pµ,Pν ] = 0. (2.8)

Since the momentum operators are commutative and follow the constraint (2.5), a

representation space of the Lie algebra can be given by functions of momenta on the

following hyperboloid,

PµPµ = − 1

κ2
, (2.9)

depicted as in figure 1.

2The remaining three independent operators

M̂i ≡ −
1

2
ǫi

jk
Jjk

are understood as the SO(2, 1) Lorentz generators of the noncommutative spacetime.
3The Greek indices run through −1 to 2 and ηµν = (−1,−1, 1, 1).
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Figure 1. The momentum space, which is the same as AdS3 space with a radius 1/κ. Here,

|P | ≡
√

P 2
1 + P 2

2 .

Then, we can identify the momentum space with an SL(2, R) group manifold as fol-

lows:4

g = P−1(g) + iκPi(g)σ̃
i, det g = 1, (2.10)

because the determinant condition of g is equivalent to

P−1(g)
2 − κ2P i(g)Pi(g) = 1, (2.11)

which is the same as (2.9) with the identification of P−1(g) = κP−1.

P−1(g) in (2.11) has two-fold degeneracy for each Pi(g). To delete this physically

unwanted degeneracy, we impose an identification condition on a field, which we will see

in the next section.

The expression (2.11) implies that the mass M2 = −P i(g)Pi(g) has an upper bound

given by

M2 ≤ 1

κ2
. (2.12)

4The σ̃is are defined by

σ̃0 = σ2, σ̃1 = iσ3, σ̃2 = iσ1,

with Pauli matrices

σ1 =

 

0 1

1 0

!

, σ2 =

 

0 − i

i 0

!

, σ3 =

 

1 0

0 − 1

!

.

These matrices satisfy

σ̃iσ̃j = −ηij + iǫijk σ̃k.

– 4 –
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2.2 The star product formalism

Next, we review the star product formalism of the noncommutative scalar field theory in

the Lie algebraic noncommutative spacetime, developed in [23]. We take the momentum

space g as SL(2, R).5

We define a scalar field φ(x) through Fourier transformation of φ̃(g) as follows:

φ(x) =

∫

dgφ̃(g)eiP (g)·x, (2.13)

where dg is the Haar measure of SL(2, R) and P (g) · x ≡ P (g)ix
i.

The star product is defined as6

eiP (g1)·x ⋆ eiP (g2)·x = eiP (g1g2)·x, (2.14)

where

Pi(g1g2) = Pi(g1)P−1(g2) + P−1(g1)Pi(g2) − κǫi
jkPj(g1)Pk(g2), (2.15)

P−1(g1g2) = P−1(g1)P−1(g2) + κ2P i(g1)Pi(g2). (2.16)

With these tools, we construct the action of the noncommutative scalar field theory.

For example, the action of noncommutative φ3 theory is given by

S =

∫

d3x

[

− 1

2
(∂iφ ⋆ ∂iφ)(x) − 1

2
M2(φ ⋆ φ)(x) − λ

3
(φ ⋆ φ ⋆ φ)(x)

]

. (2.17)

In momentum representation, the action (2.17) becomes

S = − 1

2

∫

dg1dg2φ̃(g1)(P
2(g2) +M2)φ̃(g2)(δ(g1g2) + δ(−g1g2))

− λ

3

∫

dg1dg2dg3φ̃(g1)φ̃(g2)φ̃(g3)(δ(g1g2g3) + δ(−g1g2g3)). (2.18)

To delete two-fold degeneracy of P−1(g) for each Pi(g), we impose

φ̃(g) = φ̃(−g). (2.19)

Then, the action becomes

S = −
∫

dgφ̃(g−1)(P 2(g) +M2)φ̃(g)

− 2λ

3

∫

dg1dg2dg3φ̃(g1)φ̃(g2)φ̃(g3)δ(g1g2g3). (2.20)

In this formalism, if we impose (2.19), we have a complication that φ(x) defined

in (2.13) becomes the same as φ(−x). This is not a serious problem since we may be-

come more careful in defining a field in the coordinate xi. In fact, in the next section, we

see that such complications are not found in the operator formalism.

5If we take g as SL(2, R)/Z2, we can not construct the well-defined star product [29].
6We can reproduce the commutation relation (2.1) by differentiating both hand sides of (2.14) with

respect to Pi(g1) and Pj(g2) and then taking the limit Pi(g1), Pj(g2) → 0.
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2.3 The operator formalism

Next, we review the operator formalism of the noncommutative φ3 theory, developed in [22].

An SL(2, R) group element g can be also represented by the exponential of the Pauli

matrices σ̃i:

g = eiκk·σ̃, (2.21)

Comparing (2.10) and (2.21), we find the relations between Pµ and ki as follows:

P−1 = cosh
(

κ
√
k2

)

,

Pi = ki

sinh
(

κ
√
k2

)

κ
√
k2

. (2.22)

A one particle state is given by

|g〉 ≡ eik(g)·x̂|0〉, (2.23)

where |0〉 denotes the zero momentum eigenstate with P−1 = 1. In fact, this state satisfies

P̂ie
ik(g)·x̂|0〉 = Pi(g)e

ik(g)·x̂|0〉, (2.24)

P̂−1e
ik(g)·x̂|0〉 = P−1(g)e

ik(g)·x̂|0〉, (2.25)

where we have used the following formula,

P̂µe
ik(g)·x̂ = eik(g)·x̂Tµ

ν(g)P̂ν , (2.26)

where

T (g)µ
ν =











P−1(g) − P0(g) P1(g) P2(g)

P0(g) P−1(g) − P2(g) P1(g)

P1(g) − P2(g) P−1(g) P0(g)

P2(g) P1(g) − P0(g) P−1(g)











. (2.27)

The proof of the formula (2.26) is given in the appendix A. Thus, we find that (2.23) is a

state whose momentum is equal to Pi(g) with P−1(g).

We define a scalar field as follows:

φ(x̂) =

∫

dgφ̃(g)eik(g)·x̂. (2.28)

We impose the condition (2.19) as we have done in the star product formalism. In this

formalism, there seems no problem to impose (2.19).

Acting the field on the vacuum |0〉, we obtain

|φ〉 =

∫

dgφ̃(g)|g〉, (2.29)

which is interpreted as a superposition of arbitrary momentum one-particle states.

– 6 –



J
H
E
P
0
6
(
2
0
0
9
)
0
1
3

The product of the plane waves is given by the Baker-Campbell-Haussdorff formula.

Since the Baker-Campbell-Haussdorff formula is nothing but the group multiplication,

we obtain

eik(g1)·x̂eik(g2)·x̂ = eik(g1g2)·x̂. (2.30)

Using the above definitions, we can construct the action of the noncommutative φ3 theory

as follows:

S = −1

2
〈0|φ(x̂)(P̂ 2 +M2)φ(x̂)|0〉 − λ

3
〈0|φ(x̂)φ(x̂)φ(x̂)|0〉. (2.31)

Using the following formula [22]:

〈0|g〉 = δ(g), (2.32)

the momentum representation of the action is

S = − 1

2

∫

dgφ̃(g−1)(P (g)2 +M2)φ̃(g)

− λ

3

∫

dg1dg2dg3φ̃(g1)φ̃(g2)φ̃(g3)δ(g1g2g3), (2.33)

which is essentially the same as (2.20).

2.4 The Hopf algebraic translational symmetry

At first, we briefly review the Hopf algebra and the action7 (representation) of Hopf algebra

on vector spaces [12, 13].

A Hopf algebra A is an algebra which is equipped with the following mappings:

m : A⊗A → A (product), (2.34)

u : k → A (unit), (2.35)

∆ : A → A⊗A (coproduct), (2.36)

ǫ : A → k (counit), (2.37)

S : A → A (antipode), (2.38)

which satisfy

m ◦ (m⊗ id) = m ◦ (id⊗m), (associativity) (2.39)

m ◦ (id ⊗ u) = id = m ◦ (u⊗ id), (2.40)

(∆ ⊗ id) ◦ ∆ = (id⊗ ∆) ◦ ∆, (coassociativity) (2.41)

(id⊗ ǫ) ◦ ∆ = id = (ǫ⊗ id) ◦ ∆, (2.42)

m ◦ (S ⊗ id) ◦ ∆ = u ◦ ǫ = m ◦ (id⊗ S) ◦ ∆, (2.43)

where k is a c-number.

An action αV is a map αV : A ⊗ V → V , where A is an arbitrary Hopf algebra and

V is a vector space. In abbreviated form, we write the action of Hopf algebra as a ⊲ V ,

7We use italics to distinguish it from the action S.

– 7 –
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where a is an element of the Hopf algebra. The most important axiom is that an action

on a tensor product of vector space V and W is defined by

a ⊲ (V ⊗W ) = ∆a ⊲ (V ⊗W ), (2.44)

where ∆ is the coproduct of the Hopf algebra. If we suppose the coassociativity of a

Hopf algebra,

(∆ ⊗ id) ◦ ∆(a) = (id⊗ ∆) ◦ ∆(a), (2.45)

the action on a tensor product of more than two vector spaces is also uniquely determined.

Next, we explain the Hopf algebraic translational symmetry in the noncommutative

field theory. Let us denote the translational transformation of a field φ̃(g) as

Pµ ⊲ φ̃(g) = Pµ(g)φ̃(g), (2.46)

where Pµ are the elements of the (Hopf) algebras of the translation. The action of Pµ on

the tensor product φ̃(g1)φ̃(g2) is defined with the coproduct ∆ by

Pµ ⊲ φ̃(g1)φ̃(g2) ≡ ∆Pµ ⊲ φ̃(g1)φ̃(g2). (2.47)

In the case of the product of three fields, the action of Pµ is given by

Pµ ⊲ φ̃(g1)φ̃(g2)φ̃(g3) ≡ (∆ ⊗ id) ◦ ∆Pµ ⊲ φ̃(g1)φ̃(g2)φ̃(g3)

= (id ⊗ ∆) ◦ ∆Pµ ⊲ φ̃(g1)φ̃(g2)φ̃(g3). (2.48)

Similarly, the action on arbitrary products of fields is uniquely determined by the coproduct

which satisfies the coassociativity (2.41).

In our case, (2.15) and (2.16) determine the coproduct of Pi and P−1 as

∆Pi = Pi ⊗ P−1 + P−1 ⊗ Pi − κǫi
jkPj ⊗ Pk, (2.49)

∆P−1 = P−1 ⊗ P−1 + κ2P i ⊗ Pi. (2.50)

In fact,

∆Pµ ⊲ (φ̃(g1)φ̃(g2)) = Pµ(g1g2)φ̃(g1)φ̃(g2). (2.51)

Thus, we find that the coproduct (2.49) is different from the usual one,

∆Pi = Pi ⊗ 1 + 1 ⊗ Pi, (2.52)

which leads to the usual Leibnitz rule. In κ→ 0 limit, (2.49) becomes (2.52).

Using these coproducts, we can discuss the Hopf algebraic translational symmetry of

the noncommutative field theory. For example, let us consider the action of P i on the

interaction term of (2.33). Then, it becomes

P i ⊲

∫

dg1dg2dg3φ̃(g1)φ̃(g2)φ̃(g3)δ(g1g2g3)

=

∫

dg1dg2dg3P
i ⊲ (φ̃(g1)φ̃(g2)φ̃(g3))δ(g1g2g3)

=

∫

dg1dg2dg3P
i(g1g2g3)(φ̃(g1)φ̃(g2)φ̃(g3))δ(g1g2g3)

= 0. (2.53)

– 8 –
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Figure 2. The one-loop self-energy planar diagram.

Thus, the interaction term is invariant under the Hopf algebraic translational symmetry.

In the same way, we can show that the total action of the noncommutative field theory is

invariant under the Hopf algebraic translational symmetry.

3 One-loop self-energy amplitudes of the noncommutative field theory

and the Cutkosky rule

3.1 One-loop self-energy amplitudes of the noncommutative φ3 theory

In this section, we review the calculation of the amplitudes in the three dimensional non-

commutative scalar field theory in the Lie algebraic noncommutative spacetime [22]. We

can read the Feynman rules from the action (2.33) as follows:8

propagator :
−i

P 2(g) +M2
, (3.1)

n-vertex : − iλnδ(g1 · · · gn). (3.2)

Using the above rules, we can calculate the loop amplitudes. Let us first show the

calculation of the planar one-loop self-energy amplitude in the noncommutative φ3 theory,

which is depicted as in figure 2.

The amplitude of the planar diagram is given by

iΓ(2)
p = λ2

∫

dgδ(h1h2)
1

P 2(g) +M2

1

P 2(h−1
1 g) +M2

. (3.3)

For simplicity, we set κ = 1 without loss of generality. Since SL(2, R) group space is

equivalent to AdS3 space, we can use the global coordinates,

P (g)µ = (cosh ρ cos τ, cosh ρ sin τ, sinh ρ cosφ, sinh ρ sinφ), (3.4)

where 0 ≤ ρ ≤ ∞, 0 ≤ τ ≤ 2π, 0 ≤ φ ≤ 2π. If we take the momentum of the external leg

as a time-like vector and consider in the center-of-mass frame, we can set the momentum

variables as follows:

P (h1)µ = (cos τ1, sin τ1, 0, 0), (3.5)

P (g)µ = (x1/2 cos τ, x1/2 sin τ, (x− 1)1/2 cosφ, (x− 1)1/2 sinφ), (3.6)

8Strictly speaking, there exists some complications coming from the identification (2.19). For example,

the vertex rule should be given by

−iλn(δ(g1 · · · gn) + δ(−g1 · · · gn)).

But changing (3.2) to this vertex rule does not change the essence of the calculations of the amplitudes.

– 9 –
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Figure 3. The positive energy region is shown by the bold lines. τ +π and τ are identified because

of φ(g) ∼ φ(−g).

where x = cosh2 ρ. Considering the condition (2.19), it is enough to take the range of τ1
as 0 ≤ τ1 ≤ π/2 for the positive energy external leg as in figure 3.

Using these parameterizations, we obtain

P 2(h−1
1 g) = x cos2(τ − τ1) − 1, (3.7)
∫

dg =

∫ 2π

0
dφ

∫ 2π

0
dτ

∫ ∞

1

dx

2
. (3.8)

Thus, the amplitude (3.3) becomes

iΓ(2)
p = λ2δ(h1h2)

∫ 2π

0

dφ

∫ 2π

0

dτ

∫

∞

1

dx

2

1

x cos2 τ − cos2m

1

x cos2(τ − τ1) − cos2m

= λ2πδ(h1h2)

∫ 2π

0

dτ

cos2 τ cos2(τ − τ1)

∫

∞

1

dx

(x− cos2m/ cos2 τ)(x − cos2m/ cos2(τ − τ1))
,

(3.9)

where we set M = sinm (0 ≤ m ≤ π/2). For convenience, we integrate over x from 1 to

Λ and take the limit Λ → ∞ later.9 Using the integral formula

∫ Λ

1

dx

(x− a)(x− b)
=

1

a− b
ln

(

(1 − b)(Λ − a)

(1 − a)(Λ − b)

)

, (3.10)

we find

iΓ(2)
p =λ2πδ(h1h2)

1

cos2m

1

sin τ1

∫ 2π

0

dτ

sin 2τ
(3.11)

· ln
[

sin
(

τ − τ1
2 +m

)

sin
(

τ − τ1
2 −m

)

sin (τ + τ1/2 +mΛ) sin (τ + τ1/2 −mΛ)

sin
(

τ + τ1
2 +m

)

sin
(

τ + τ1
2 −m

)

sin (τ − τ1/2 +mΛ) sin (τ − τ1/2 −mΛ)

]

,

where we have defined cosmΛ = cosm/
√

Λ and shifted τ to τ + τ1/2.

9This is necessary for the τ -integration to be carried out in a well-defined manner in the following.
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Then, we consider the τ -integral,

I(τ1) =

∫ 2π

0

dτ

sin 2τ

· ln
[

sin(τ − τ1
2 +m) sin(τ − τ1

2 −m) sin(τ + τ1/2 +mΛ) sin(τ + τ1/2 −mΛ)

sin(τ + τ1
2 +m) sin(τ + τ1

2 −m) sin(τ − τ1/2 +mΛ) sin(τ − τ1/2 −mΛ)

]

.

(3.12)

Differentiating I(τ1) with respect to τ1, we obtain

I ′(τ1) =

∫ 2π

0

dτ

2 sin 2τ

[

cos(m− τ − τ1
2 )

sin(m− τ − τ1
2 )

− cos(mΛ − τ − τ1
2 )

sin(mΛ − τ − τ1
2 )

− cos(m+ τ − τ1
2 )

sin(m+ τ − τ1
2 )

+
cos(mΛ + τ − τ1

2 )

sin(mΛ + τ − τ1
2 )

+
cos(m− τ + τ1

2 )

sin(m− τ + τ1
2 )

− cos(mΛ − τ + τ1
2 )

sin(mΛ − τ + τ1
2 )

− cos(m+ τ + τ1
2 )

sin(m+ τ + τ1
2 )

+
cos(mΛ + τ + τ1

2 )

sin(mΛ + τ + τ1
2 )

]

. (3.13)

Replacing τ to w ≡ e2iτ , it becomes

I ′(τ1) = i

∮

dw

w2 − 1

[

− w + α−

w − α−
− w + α−1

−

w − α−1
−

− w + α+

w − α+
− w + α−1

+

w − α−1
+

+
w + β−
w − β−

+
w + β−1

−

w − β−1
−

+
w + β+

w − β+
+
w + β−1

+

w − β−1
+

]

, (3.14)

where α± ≡ e2i(m±τ1/2), β± ≡ e2i(mΛ±τ1/2). Taking the −iǫ-prescription, m, mΛ are shifted

to m− iǫ, mΛ − iǫ, respectively. Thus, the poles which contribute to the contour integral

are the only w = α−1
− , α−1

+ , β−1
− , β−1

+ . Carrying out the contour integral, we obtain

I ′(τ1) = −2πi

(

1

sin(τ1 − 2m)
− 1

sin(τ1 + 2m)
− 1

sin(τ1 − 2mΛ)
+

1

sin(τ1 + 2mΛ)

)

. (3.15)

Taking the limit Λ → 0, the last two terms in (3.15) are canceled because mΛ goes to π/2.

Integrating I ′(τ1) over τ1 and using I(0) = 0, we obtain

I(τ1) = −2πi ln

(

tan(m− τ1
2 )

tan(m+ τ1
2 )

)

. (3.16)

Thus, the planar amplitude is

iΓ(2)
p = −i 2π2λ2

cos2m
δ(h1h2)

1

sin τ1
ln

(

tan(m− τ1
2 )

tan(m+ τ1
2 )

)

. (3.17)

We can also obtain the amplitude of the one-loop self-energy nonplanar diagram in the

noncommutative φ3 theory, which is depicted as in figure 4. Using the Feynman rules (3.2),

– 11 –
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Figure 4. The one-loop self-energy nonplanar diagram.

Figure 5. The braiding rule.

the nonplanar amplitude is given by

iΓ(2)
np = (−iλ)2

∫

dg1dg2
−i

P 2(g1) +M2

−i
P (g2)2 +M2

δ(g−1
2 h1g1)δ(g2h2g

−1
1 )

= λ2

∫

dg1
1

P 2(g1) +M2

1

P (g2)2 +M2
δ(h1g1h2g

−1
1 ). (3.18)

The result is [22]

iΓ(2)
np =

λ2π√
1 −M2

θ(−p0p
′
0)δ(p−1 − p′−1)

· 1
√

(p+ p′)2/4 −M2p2
· 2(1 −M2)p2 − (p+ p′)2/4

−((p+ p′)2/4)2 − 4(1 −M2)((p + p′)2/4 −M2p2)
,

(3.19)

where pi = P (h1)i, p
′
i = P (h2)i.

From the above expression, we find that the external momenta are not conserved. In

general, we can see that nonplanar diagrams in noncommutative field theory in the Lie-

algebraic noncommutative spacetime do not possess the external momentum conservation

law. But as we described in the introduction, in order to possess a Hopf algebraic symmetry

in a field theory at quantum level, we have to include a nontrivial statistics, which is called

braiding [16]. In the case of the noncommutative scalar field theory in the Lie-algebraic

noncommutative spacetime, the braiding is given by [16, 23]

ψ(φ̃1(g1) ⊗ φ̃2(g2)) = φ̃2(g2) ⊗ φ̃1(g
−1
2 g1g2), (3.20)

where ψ means the exchange of two fields. Thus, we should include the additional Feynman

rule as in figure 5.
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Figure 6. The Cutkosky rule of the one-loop self-energy diagram in φ3 theory.

Considering the braiding rule, the nonplanar amplitude (3.18) becomes

iΓ(2)
np = (−iλ)2

∫

dg1dg
′
1dg2

−i
P 2(g1)+M2

−i
P (g2)2+M2

δ(g−1
2 h1g1)δ(g2h2g

′−1
1 )δ(g−1

1 h2g
′
1h

−1
2 )

= (−iλ)2δ(h1h2)

∫

dg1
−i

P 2(g1) +M2

−i
P (h1g1)2 +M2

.

Since this is the same as the planar amplitude (3.17), the momentum conservation

is restored.

It is worth mentioning that even if fields possess a nontrivial braiding, we can formulate

correlation functions by using the braided path integral [16, 30]. The naively derived

Feynman rules (3.2) are justified in the context of the braided quantum field theory.

3.2 The Cutkosky rule of the one-loop self-energy diagram

We check whether the Cutkosky rule [20, 21], which gives the unitary relation of S-matrix

in conventional field theories, is satisfied in the noncommutative field theory in the Lie

algebraic noncommutative spacetime at the one-loop self-energy diagram.

The Cutkosky rule is given by

2ImΓab =
∑

n

ΓanΓ∗
nb, (3.21)

where Γab is the transition matrix element between states a and b, and the summation is

over all the ways to cut through the diagram such that the cut propagators can simulta-

neously be put on shell. When we check the unitarity, we impose the on-shell conditions

on the external legs, where the on-shell conditions restrict the energies to reside on the

bold line in figure 3. In φ3 theory, the Cutkosky rule of the one-loop self-energy diagram

is given by figure 6.

As we have seen in the previous section, the one-loop nonplanar self-energy diagram

becomes the same contribution as the planar diagram if we include the braiding (3.20).

Thus, we only check the Cutkosky rule of the planar diagram. The imaginary part of the

planar amplitude (3.17) is given by

2ImΓ(2)
p = i

2π2λ2

cos2m
δ(h1h2)

1

sin τ1

(

ln

(

tan(m− iǫ− τ1
2 )

tan(m− iǫ+ τ1
2 )

)

− ln

(

tan(m+ iǫ− τ1
2 )

tan(m+ iǫ+ τ1
2 )

))

.

(3.22)
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Figure 7. The regions of the branch cuts in (3.22) when 0 ≤ m ≤ π
4 .

Figure 8. The shadow areas show the regions in which (3.22) does not vanish.

This expression has branch cuts in the following regions:

2m ≤ τ1 ≤ π

2
, for 0 ≤ m ≤ π

4
, (3.23)

π − 2m ≤ τ1 ≤ π

2
, for

π

4
≤ m ≤ π

2
, (3.24)

because the arguments of the logarithm become negative. Figure 7 shows the region of the

branch cut in (3.22) when 0 ≤ m ≤ π/4.

Evaluating the discontinuity of the Riemann surface, we obtain

2ImΓ(2)
p =

4π3λ2

cos2m
δ(h1h2)

1

sin τ1
, (3.25)

if τ1 is in the region given by (3.23) or (3.24). Otherwise, the imaginary part of the

amplitude vanishes. Figure 8 shows the regions in which (3.22) does not vanish.
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Figure 9. The physical process for (3.23).

Figure 10. The unphysical process for (3.24).

We can give the physical interpretation of the result. If m is less than π/4, the physical

process given by figure 9 will contribute to the imaginary part of the amplitude, and the

threshold for τ1 is 2m, corresponding to the region (3.23). On the other hand, if m is larger

than π/4, the unphysical process given by figure 10 will contribute to the imaginary part

of the amplitude, because the threshold value of two negative masses π−2m ∼ −2m under

the identification g ∼ −g is in the positive energy region. This corresponds to (3.24).

To obtain the right hand side of (3.21), we replace the propagators in (3.3) by

1

P 2(g) +M2
→ 2πiδ(P 2(g) +M2), (3.26)

where we have to take only the positive energy poles for the direction of time. Since g is

identified with −g, the positive energy conditions are given by

P0(g) ≥ 0 for P−1(g) ≥ 0, P0(g) ≤ 0 for P−1(g) ≤ 0 (3.27)

P0(g
−1h1) ≥ 0 for P−1(g

−1h1) ≥ 0, P0(g
−1h1) ≤ 0 for P−1(g

−1h1) ≤ 0. (3.28)

Using the parameterizations (3.5) and (3.6), the positive energy conditions are

represented as

R : 0 ≤ τ ≤ τ1, π ≤ τ ≤ π + τ1. (3.29)

Then, the right hand side of (3.21) becomes

∑

|Γ|2 = 4π2λ2δ(h1h2)

∫

R

dτ

∫ 2π

0

dφ

∫

∞

1

dx

2
δ(x cos2 τ − cos2m)δ(x cos2(τ − τ1) − cos2m)

= 8π3λ2δ(h1h2)

∫

∞

1

dx

2x2

∫

R

dτδ(cos2 τ − cos2mx)δ(cos2(τ − τ1) − cos2mx)

= 4π3λ2δ(h1h2)

∫

∞

1

dx

x2

∫

R

dτδ(cos2 τ − cos2mx)δ(sin(mx − τ1 + τ) sin(mx + τ1 − τ)),

(3.30)
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Figure 11. The bold lines show the range of R. For (3.30) to be non-zero, mx must be in the

range of R.

where cosmx ≡ cosm/
√
x. From the first delta-function in (3.30), the possible values of

τ are

τ = mx, π −mx, π +mx, 2π −mx. (3.31)

Since the range of m is 0 ≤ m ≤ π/2, mx is in

m ≤ mx ≤ π

2
. (3.32)

Thus, τ = mx and τ = π + mx are in the range of R if and only if 0 ≤ m ≤ mx ≤ τ1
as in figure 11.

Taking these two values, (3.30) becomes

∑

|Γ|2 = 4π3λ2 1

sin τ1
δ(h1h2)

∫ ∞

1

dx

x2

1

cosmx sinmx
δ(sin(2mx − τ1)). (3.33)

From the delta-function in (3.33), mx must satisfy

2mx − τ1 = nπ, (3.34)

where n ∈ Z. But from (3.32) and the range of τ1, the possible value of n is n = 0. Also,

we find that τ1 is restricted to the following region:

2m ≤ τ1 ≤ π

2
. (3.35)

Therefore, m is restricted to the range of 0 ≤ m ≤ π/4. Integrating over x, we obtain

∑

|Γ|2 =
4π3λ2

sin τ1 cos2m
δ(h1h2), (3.36)
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Figure 12. The shadow areas show the regions in which the right hand side of (3.21) does not

vanish.

Figure 13. The Cutkosky rule is satisfied in the shadow region.

which is the same as (3.25). Thus, the right hand side of (3.21) is given by (3.36) only if

2m ≤ τ1 ≤ π/2 and 0 ≤ m ≤ π/4 as in figure 12. Otherwise, it is zero.

Comparing figure 8 and 12, we find that the Cutkosky rule is satisfied if

0 ≤ τ1 ≤ π

2
, for 0 ≤ m ≤ π

4
,

0 ≤ τ1 < π − 2m, for
π

4
< m ≤ π

2
, (3.37)

and is violated if

π − 2m ≤ τ1 ≤ π

2
, for

π

4
< m ≤ π

2
, (3.38)

depicted as in figure 13.

4 Summary and comment

We have investigated the one-loop unitarity of the three dimensional braided noncommuta-

tive φ3 theory in the Lie algebraic noncommutative spacetime [x̂i, x̂j] = 2iκǫijkx̂k by exam-
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ining the Cutkosky rule of the one-loop self-energy diagram. We did not have to evaluate

the nonplanar amplitude because if we include the braiding, it has the same contribution

as the planar one. Then, we have found that the Cutkosky rule is satisfied at the one-loop

level when the mass M is smaller than 1/
√

2κ. This result is contrary to the fact that non-

commutative field theories in the Moyal plane violate the unitarity at the one-loop level

when the time-like noncommutativity does not vanish irrespective of the values of mass.

However, the Cutkosky rule is found to be violated when the mass M is larger than

1/
√

2κ. This enigmatic result comes from the fact that the virtual negative energy process

depicted as in figure 10 occurs in the planar diagram. This mechanism of the violation

of unitarity is different from that in the Moyal-type noncommutative field theories with a

non-zero time-like noncommutativity.

The above results, however, do not imply that the theory is unitary when the mass is

smaller than 1/
√

2κ. Throughout this paper, we have only checked the Cutkosky rule of

the one-loop self-energy amplitude. In more complicated amplitudes, the virtual negative

energy processes occur more likely and the the Cutkosky rules will be broken for a smaller

mass M , and the unitarity of the theory as a whole will be violated for any values of

the mass. On the other hand, since this violation of the unitarity comes from the periodic

property of the SL(2, R)/Z2 group momentum space, the extension of the group momentum

space to the universal covering group may drastically remedy the unitarity property of the

theory. This should be investigated in future works.
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A The proof of the formula (2.26)

Since the commutation relation between coordinates and momenta is written by only mo-

menta, we can find

e−isk·x̂P̂µe
isk·x̂ = Tµ

ν(k; s)P̂ν , (A.1)

where s is a real parameter. Differentiating both hands sides with respect to s, we obtain

− iski
[

x̂i, e
−isk·x̂P̂µe

isk·x̂
]

=
d

ds
Tµ

ν(k; s)P̂ν . (A.2)

Using (A.1), the above equation becomes

d

ds
Tµ

ν(k; s)P̂ν = −iskiTµ
ν(k; s)

[

x̂i, P̂ν

]

. (A.3)

Using (2.3) and (2.7), the commutator between x̂i and P̂ν becomes

[

x̂i, P̂ν

]

= iκ
(

−η−1,νP̂i + ηiνP̂−1 + ǫi
jkηjνP̂k

)

. (A.4)
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For convenience, we set κki ≡ k̄i. We can write the equation (A.3) as follows:

d

ds
Tµ

ν(k; s) = Tµ
ρ(k; s)Kρ

ν , (A.5)

where

Kρ
ν =











0 k̄0 k̄1 k̄2

−k̄0 0 −k̄2 k̄1

k̄1 −k̄2 0 −k̄0

k̄2 k̄1 k̄0 0











. (A.6)

The matrix K is written by Pauli matrices as follows:

K = −k̄1σ̄1 − k̄2σ̄2 − k̄3σ̄3 (A.7)

where

σ̄1 = −1 ⊗ σ1,

σ̄2 = σ2 ⊗ σ2,

σ̄3 = −σ2 ⊗ σ3, (A.8)

and k̄3 ≡ ik̄0. σ̄i follows the same relation as the Pauli matrices. Thus we can solve the

equation (A.5). The solution is

(T )µ
ν =

(

eK
)

µ
ν =



cosh
(√

k̄2
)

−
sinh

(√
k̄2

)

√
k̄2

k̄iσ̄i





µ

ν . (A.9)

Using the expression (2.22), the matrix M is represented by

Tµν =











−P−1 P̄0 P̄1 P̄2

−P̄0 − P−1 − P̄2 P̄1

−P̄1 P̄2 P−1 P̄0

−P̄2 − P̄1 − P̄0 P−1











, (A.10)

where P̄i = κPi.

References

[1] H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [SPIRES].

[2] C.N. Yang, On quantized space-time, Phys. Rev. 72 (1947) 874 [SPIRES].

[3] A. Connes and J. Lott, Particle models and noncommutative geometry (expanded version),

Nucl. Phys. Proc. Suppl. 18B (1991) 29 [SPIRES].

[4] S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of space-time at the

Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 [hep-th/0303037]

[SPIRES].

[5] A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory:

compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [SPIRES].

– 19 –

http://dx.doi.org/10.1103/PhysRev.71.38
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,71,38
http://dx.doi.org/10.1103/PhysRev.72.874
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,72,874
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ,18B,29
http://dx.doi.org/10.1007/BF02104515
http://arxiv.org/abs/hep-th/0303037
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0303037
http://dx.doi.org/10.1088/1126-6708/1998/02/003
http://arxiv.org/abs/hep-th/9711162
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711162


J
H
E
P
0
6
(
2
0
0
9
)
0
1
3

[6] N. Seiberg and E. Witten, String theory and noncommutative geometry,

JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

[7] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory,

Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [SPIRES].

[8] R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207

[hep-th/0109162] [SPIRES].

[9] M. Chaichian, P.P. Kulish, K. Nishijima and A. Tureanu, On a Lorentz-invariant

interpretation of noncommutative space-time and its implications on noncommutative QFT,

Phys. Lett. B 604 (2004) 98 [hep-th/0408069] [SPIRES].

[10] J. Wess, Deformed coordinate spaces: derivatives, hep-th/0408080 [SPIRES].

[11] F. Koch and E. Tsouchnika, Construction of theta-Poincaré algebras and their invariants on
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